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Abstract

Time series of US landfalling and North Atlantic hurricane counts and their ratios5

over the period 1878-2008 are examined and modeled using different climate variables6

(tropical Atlantic sea surface temperature (SST), tropical mean SST, North Atlantic7

Oscillation, and Southern Oscillation Index). Two different SST input data (Met8

Office’s HadISSTv1 and NOAA’s ERSSTv3b) are employed to examine the uncer-9

tainties in the reconstructed SST data on the modeling results. Due to the likely10

undercount of recorded hurricanes in the earliest part of the record, we consider both11

the uncorrected hurricane record (HURDAT) maintained by the National Hurricane12

Center, and a time series with a recently proposed undercount correction.13

Modeling of the count data is performed by means of a conditional Poisson regres-14

sion model, in which the rate of occurrence parameter can be a linear or non-linear15

function of the climate indices. Model selection is performed following a stepwise16

approach and using two different penalty criteria. The results of this study do not17

allow identifying a single “best” model due to the different model configurations re-18

sulting from the different SST input data, corrected versus uncorrected count time19

series, and penalty criteria. These differences were both at the level of the selected20

covariates and their function relation to the Poisson parameter. Despite the lack of21

an objectively identified unique final model, we recommend a set of models in which22

the parameter of the Poisson distribution is a linear function of both tropical Atlantic23

and tropical mean SSTs.24
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Modeling of the fractions of North Atlantic hurricanes making landfall in the US25

is performed by means of the zero-inflated beta regression model. Similar to the26

count data, it is not possible to identify a single “best” model, but different model27

configurations are obtained depending on the SST input data, undercount correction,28

and selected penalty criterion. The results of this study suggest that these fractions29

are controlled by both local (mostly related to the NAO) and remote (SOI and tropical30

mean SST) effects.31
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1 Introduction32

North Atlantic hurricanes claim a large toll in terms of fatalities and economic damage33

every year (e.g., Pielke and Landsea 1998, 1999; Rappaport 2000; Arguez and Elsner34

2001; Negri et al. 2005; Ashley and Ashley 2008a; Pielke et al. 2008; Derrig et al.35

2008; Saunders and Lea 2005; Ashley and Ashley 2008b; Changnon 2009; Villarini36

and Smith 2010). Therefore, our improved understanding of the physical mechanisms37

responsible for their genesis, development, and tracking are not only of interest from38

a scientific standpoint, but have important societal and economic repercussions as39

well.40

It is currently still unclear what the possible changes in North Atlantic hurricane41

frequency would be in a warmer climate (e.g., Shepherd and Knutson 2007; Vecchi42

et al. 2008b; Villarini et al. 2011b; the interested reader is pointed to Knutson et al.43

(2010) for a recent review), with contradicting results in the sign of these changes, let44

alone their magnitude (e.g., Bengtsson et al. 1996; Knutson et al. 1998; Emanuel 2005;45

Mann and Emanuel 2006; Oouchi et al. 2006; Holland and Webster 2007; Bengtsson46

et al. 2007; Knutson et al. 2008; Gualdi et al. 2008; Emanuel et al. 2008; Sugi et al.47

2009; Zhao et al. 2009; Bender et al. 2010). Our capability of predicting future48

changes in hurricane frequency lays its foundation on our capability to understand49

and represent the physical processes responsible for the variability exhibited by the50

existing record at various time scales, from intra- and inter- annual to multidecadal.51

An important element of this process is examining the dominant factors that explain52
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the variations in frequency of North Atlantic and US landfalling hurricanes.53

Several studies have explored the impact of different climate indices on the North54

Atlantic tropical storm and hurricane frequency. Among the most commonly used in-55

dices, we find Atlantic and tropical sea surface temperatures (SSTs), El Niño-Southern56

Oscillation (ENSO), North Atlantic Oscillation (NAO), West African monsoon, At-57

lantic Multidecadal Oscillation, Atlantic Meridional Mode (AMM), Madden-Julian58

Oscillation (MJO), Quasi-Biennal Oscillation (among others, consult Villarini et al.59

(2010) for a recent list of references). No general agreement still exists regarding which60

of these climate variables should be included in a model describing North Atlantic61

and US landfalling hurricane frequencies. For instance, Bove et al. (1998) examined62

the effects of El Niño on US landfalling hurricanes and found that the probability63

of two or more US hurricane strikes increased from 28% during an El Niño year to64

66% during a La Niña year. Elsner et al. (2001) used a Poisson regression model65

to examine the relation between US landfalling hurricane data and ENSO and NAO66

(see also Elsner (2003), Elsner et al. (2004), and Elsner and Jagger (2006) for addi-67

tional models of US landfalling hurricane counts). Parisi and Lund (2008) found that68

NAO and the Bivariate El Niño-Southern Oscillation (an index computed from the69

Southern Oscillation Index and El Niño 3.4) can be used to model the US landfalling70

hurricane strike count. Dailey et al. (2009) examined the relation between Atlantic71

SST and US landfalling hurricanes. Vecchi et al. (2011) built a Poisson regression72

model from 212 years of global atmospheric simulations from the HiRAM-C180 model73
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(Zhao et al. 2009, 2010) and assumed that both tropical Atlantic and tropical mean74

sea surface temperature were important predictors, finding that the former exerted a75

positive impact (increasing frequency of hurricanes with increasing tropical Atlantic76

SST) and the latter a negative impact (decreasing frequency of hurricanes with in-77

creasing tropical mean SST). Kossin et al. (2010) divided the North Atlantic tropical78

storms and hurricanes into four clusters and investigated their frequency in terms of79

ENSO, AMM, NAO, and MJO.80

Modeling of the North Atlantic hurricanes is complicated by the uncertainties81

associated with the Hurricane dataset (HURDAT; Jarvinen et al. 1984; Neumann82

et al. 1993; MacAdie et al. 2009), which is maintained by the National Hurricane83

Center (NHC). For all the recorded storms starting from 1851, the HURDAT dataset84

provides information about the latitude, longitude, minimum pressure and maximum85

wind speed at the center of circulation at the six-hourly scale. The homogeneity of86

this record has been object of extensive criticisms. Statements about the presence87

of increasing linear trends are unavoidably affected by the large uncertainties in the88

record, especially considering the large leverage that the data at the beginning of the89

time series would exert. There is, therefore, a trade-off between the availability of90

the longest possible record and having results which are affected by significant uncer-91

tainties. To address this issue, several different corrections for possible undercounts92

have been proposed, each of them based on different assumptions and methodologies93

(e.g., Landsea et al. 2004; Landsea 2007; Mann et al. 2007; Chang and Guo 2007;94
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Chenoweth and Divine 2008; Vecchi and Knutson 2008; Landsea et al. 2010; Vecchi95

and Knutson 2011). In addition, efforts are underway to “reanalyze” the record using96

historical meteorological observations (e.g., Landsea et al. 2004, 2008). Even though97

it will never be possible to know with complete certainty the exact number of hur-98

ricanes over the entire record, the use of corrections for possible undercounts would99

mitigate the impact of these errors and allow making more meaningful statements100

about the results of these study.101

In this study we have examined the relation between the climate indices and counts102

of US landfalling and North Atlantic hurricanes by means of a Poisson regression103

model. We take the lead from studies already published in the literature (e.g., Elsner104

and Schmertmann 1993; McDonnell and Holbrook 2004a,b; Elsner et al. 2004; Elsner105

and Jagger 2004; Sabbatelli and Mann 2007; Elsner et al. 2008; Mestre and Hallegatte106

2009; Villarini et al. 2010) and build on them. We consider five different predictors107

(tropical Atlantic SST, tropical mean SST, NAO averaged over two different periods,108

and SOI), reflecting our currently understanding of the physical processes responsible109

for the frequency of North Atlantic hurricanes. In particular, the use of both tropical110

Atlantic and mean tropical SSTs is partly motivated by the broad evidence in support111

of the concept that tropical Atlantic SST relative to SST of the global tropics is a more112

significant predictor for the conditions that impact cyclone frequency than absolute113

tropical Atlantic SST (e.g., Sobel et al. 2002; Tang and Neelin 2004; Latif et al. 2007;114

Vecchi and Soden 2007; Swanson 2008; Knutson et al. 2008; Vecchi et al. 2008b; Zhao115
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et al. 2009, 2010; Villarini et al. 2010, 2011b). Rather than assuming a linear relation116

between covariates and parameter of the Poisson regression model by means of an117

appropriate link function, we allow for non-linear dependencies as well by means of118

cubic splines. Moreover, the selection of the most appropriate predictors is performed119

using two different selection criteria. Villarini et al. (2010) showed that there is not120

a “single best” statistical model when modeling North Atlantic and US landfalling121

tropical storms, but different final models result from different selection criteria. To122

account for likely undercount in the number of North Atlantic hurricanes in the pre-123

satellite era (pre-1966), we model both the original HURDAT record as well as the124

HURDAT time series after correcting for undercounts using the approach recently125

described in Vecchi and Knutson (2011). Finally, we do not restrict ourselves to one126

single SST dataset, but examine the impact of different SST input data (e.g., Vecchi127

et al. 2008a; Bunge and Clarke 2009) by employing two different SST records.128

As discussed above, modeling the number of hurricanes in the North Atlantic129

basin and making landfall in the US has been the object of several studies. However,130

examination of the temporal changes in the fractions of North Atlantic hurricanes131

making US landfall has received much less attention. Landsea (2007) explored the132

ratio of landfalling to total tropical storms, and argued that the notable increase over133

time was evidence for an inhomogeneity of the tropical storm record. Coughlin et al.134

(2009) examined these ratios, applying different statistical tests. They found that135

these fractions were different between the first and second half of the 20th century136
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(most likely due to inhomogeneities in the record), but could be considered constant137

over the most recent part of the record. After applying a correction to the North138

Atlantic basinwide hurricane record, Vecchi and Knutson (2011) found that the 1878-139

2008 record of US landfalling hurricane fraction became more stationary. To the best140

of our knowledge there are no studies attempting to describe the fraction of North141

Atlantic hurricanes making US landfall in terms of climate variables. Improved un-142

derstanding of the physical mechanisms responsible for the hurricane landfall would143

improve our capability of predicting and understanding landfalling hurricanes, with144

important implications for decision makers and for the insurance and reinsurance in-145

dustry (e.g., Lonfat et al. 2007). In particular, a model able to describe the fraction of146

hurricanes making landfall in terms of climate indices could be coupled with predic-147

tive models of the overall North Atlantic hurricane activity (e.g., Gray 1984b; Elsner148

and Jagger 2006; Vitart 2006; Vecchi et al. 2011; consult Camargo et al. (2007) for a149

review). From a statistical standpoint, modeling of this type of data is complicated150

by the fact that the ratios are bounded between 0 and 1, with non-zero probability151

mass at 0 (no hurricanes making landfall). Statistical models able to describe these152

data revolve around inflated beta distributions and have only recently been presented153

in the statistical literature (Ospina and Ferrari 2010).154

The main questions we address in this study can be summarized as follows:155

1. what are the important climate indices to describe the frequency of US land-156

falling and North Atlantic hurricanes?157
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2. what are the important covariates to describe the fractions of North Atlantic158

hurricanes making landfall in the US?159

3. what is the sensitivity of these models to hurricane undercounts, SST input160

data, and criterion for model selection?161

The paper is organized in the following way. In Section 2 we describe the data and162

the climate indices, followed by Section 3 in which we describe the Poisson regression163

model and the zero-inflated beta regression model used to model the frequency of US164

landfalling and North Atlantic hurricanes and their ratios. The results of this study165

are presented in Section 4. Finally, in Section 5 we discuss some of the issues with166

this study and summarize the main points of this work.167

2 Data168

2.1 Hurricane Data169

The number of North Atlantic hurricanes (Saffir-Simpson Category 1-5) is derived170

from the HURDAT database (Jarvinen et al. 1984; Neumann et al. 1993; MacAdie171

et al. 2009), which contains the number of hurricanes since 1851. This dataset, how-172

ever, is not homogeneous and becomes more prone to missed hurricanes the further173

back we go. Until 1943, the number of recorded storms relies on ship observations (not174

homogeneous themselves and affected by changes in the ship tracks; Vecchi and Knut-175
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son 2008) and landfall recordings. Organized aircraft reconnaissance flights started in176

1944 and complemented the ship accounts. The hurricane record from 1966 is largely177

based on satellite observations.178

These changes in the observation system raised questions about the accuracy of179

the HURDAT record, in particular regarding the earliest parts (pre-1944). Several180

different corrections have been proposed to account for likely storm undercounts, each181

of them based on different hypothesis (e.g., Landsea et al. 2004; Landsea 2007; Chang182

and Guo 2007; Mann et al. 2007; Vecchi and Knutson 2008; Landsea et al. 2010).183

These corrections, however, were not specifically developed for hurricanes. Vecchi184

and Knutson (2011), however, recently proposed a correction for likely undercounts185

of hurricanes in the North Atlantic basin, following a methodology similar to the one186

described in Vecchi and Knutson (2008). As far as US landfalling hurricane counts are187

concerned, we conditionally assume that the record is complete due to the devastating188

impact that these storms would have had.189

In this study we model the yearly number of North Atlantic hurricanes and US190

landfalling hurricanes over the period 1878-2008. When dealing with the overall North191

Atlantic hurricane activity, we consider two datasets: time series obtained from the192

original HURDAT dataset (we will refer to this record as “uncorrected”), and a time193

series in which the HURDAT dataset is corrected for undercount using the correction194

in Vecchi and Knutson (2011) (we will refer to this record as “corrected”). These195

three time series are shown in Figure 1. These data exhibit considerable interannual196
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and interdecadal variability, with periods of higher activity alternating to periods of197

lower activity. Comparison between the uncorrected and corrected records highlights198

the largest discrepancies in the earliest parts of the records, in which the undercount199

correction was larger. These discrepancies become smaller as we move towards the200

satellite era.201

In addition to the modeling of the hurricane counts, we also focus on the statistical202

modeling of the fraction of the North Atlantic hurricanes that made landfall in the US203

(Figure 2). These time series are bound between 0 (in a given year, no hurricane made204

landfall in the US) and 1 (all of the hurricanes formed in the North Atlantic made205

landfall in the US as hurricanes). While there have been years with no landfalling206

hurricanes, over 1878-2008 there are no years in which all of the North Atlantic hur-207

ricanes made landfall in the US as hurricanes. Once again, we use both the corrected208

and uncorrected HURDAT database for the overall North Atlantic hurricane activity.209

Again, there are considerable variations on a variety of timescales with periods of210

larger US landfalling fraction alternating to periods of lower frequency. When using211

the uncorrected HURDAT, we observe larger fractions towards the beginning of our212

record, due to the lower number of recorded North Atlantic hurricanes, similar to213

Landsea (2007) for tropical storms and Coughlin et al. (2009).214
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2.2 Climate Indices215

We use as possible predictors to describe the frequency of North Atlantic hurri-216

canes, US landfalling hurricanes, and fraction of hurricanes making landfall in the217

US four different climate indices: tropical Atlantic SST (SSTAtl), tropical mean218

SST (SSTTrop), Southern Oscillation Index (SOI), and the North Atlantic Oscillation219

(NAO). We have focused on these variables because of the availability of relatively220

high quality data over our study period and for their relation to the physical fac-221

tors that control the genesis, development and tracking of North Atlantic hurricanes.222

A warm Atlantic is generally more conducive to increased hurricane activity (e.g.,223

Emanuel 2005; Mann and Emanuel 2006; Vecchi and Soden 2007; Swanson 2008;224

Zhao et al. 2009; Villarini et al. 2010). Recent studies, however, showed that a better225

predictor of the North Atlantic tropical storm and hurricane activity is represented by226

the tropical Atlantic SST relative to the state of the tropics (e.g., Vecchi and Soden227

2007; Swanson 2008; Vecchi et al. 2008b; Zhao et al. 2009; Villarini et al. 2010; Vecchi228

et al. 2011; Villarini et al. 2011b). Hurricane genesis and development is generally229

suppressed (favored) by increasing (decreasing) vertical shear of the upper level hor-230

izontal winds during El Niño (La Niña) events (e.g., Gray 1984a; Wu and Lau 1992;231

DeMaria 1996). The strength of the trade winds and the position of the Bermuda232

High are indicated as the physical link between NAO and hurricane activity (e.g.,233

Elsner et al. 2000b, 2001), with effects mostly associated with the steering of the234

hurricane tracks.235
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We compute the tropical Atlantic SST anomalies for a box 10N-25N and 80W-236

20W while the tropical mean SST over a box 30S-30N. Both of them are averaged237

over the period June-November. We use SST time series obtained from two datasets238

to examine the sensitivity of our results to different inputs. Similar to Villarini239

et al. (2010), we use both the UK Met Office’s HadISSTv1 (Rayner et al. 2003)240

and NOAA’s Extended Reconstructed SST (ERSSTv3b; Smith et al. 2008). Despite241

measuring the same quantity (SST), they exhibit differences associated with different242

methods used to infill missing SST values, as well as different ways of correcting243

for data inhomogeneities and the use of the satellite record. The SOI time series is244

averaged over the August-October period and is computed as described in Trenberth245

(1984). The NAO is computed as in Jones et al. (1997) and averaged over two246

different periods (May-June (NAOMJ) and August-October (NAOAO); Elsner et al.247

2000b, 2001; Elsner 2003; Elsner et al. 2004; Mestre and Hallegatte 2009; Villarini248

et al. 2010). The selection of these two averaging periods is due to the fact that NAO249

is stronger during boreal winter and spring (e.g., Hurrell and Van Loon 1997) but we250

also want to have a period representative of the core of the hurricane season.251
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3 Statistical Models252

3.1 Poisson Regression Model253

Poisson regression is a form of Generalized Additive Model (GAM; e.g., Hastie and254

Tibshirani 1990) in which the predictand is in the form of count data and follows a255

Poisson distribution. Let us define the number of North Atlantic and US landfalling256

hurricanes in the i th year by Ni. We can write that Ni follows a conditional Poisson257

distribution with rate of occurrence Λi if:258

P (Ni = k|Λi) =
e−ΛiΛk

i

k!
[k = 0, 1, 2, . . . ] (1)

The parameter Λi can assume the following general formulation:259

Λi = exp[β0 + β1h1(z1i) + β2h2(z2i) + ... + βnhn(zni)] (2)

where {z1i, . . ., zni} is a vector of n observable covariate random variables for the i th
260

year (see Smith and Karr (1983) and Karr (1991) for a more general formulation).261

As discussed in the previous section, we consider five predictors (SSTAtl, SSTTrop,262

SOI, NAO averaged over two different periods), as well as two-way interactions (e.g.,263

Elsner and Jagger 2004; Mestre and Hallegatte 2009; Villarini et al. 2010).264

As a special case of equation 2, we could have that all the beta coefficients are265

equal to zero, with Λi=exp[β0] (standard Poisson random variable). Moreover, if266
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ln(Λi) linearly depends on the covariates, we have a Generalized Linear Model (GLM;267

McCullagh and Nelder 1989; Dobson 2001) and we can write that Λi=exp[β0+β1x1i+268

β2x2i + ... + βnxni].269

In this study, we do not limit the dependence of Λi on the covariates (via a loga-270

rithmic link function) to be only linear (e.g., Elsner and Schmertmann 1993; Elsner271

et al. 2000a; Elsner and Jagger 2004, 2006; Sabbatelli and Mann 2007). We also in-272

clude the case in which the relation between predictand and predictors is by means of273

a cubic spline (e.g., Mestre and Hallegatte 2009; Villarini et al. 2010). Model selection274

(in terms of both covariates and their relation to the Poisson parameter) is performed275

using a stepwise approach, penalizing with respect to both the Akaike Information276

Criterion (AIC; Akaike 1974) and the Schwarz Bayesian Criterion (SBC; Schwarz277

1978). The use of these criteria would help in avoiding model overfit, and represents278

a trade-off between the complexity and the accuracy of the models. Because of our279

sample size (131 years), SBC would apply a larger penalty compared to AIC, lead-280

ing to a more parsimonious model. We, therefore, would expect the model selected281

according to SBC to be more parsimonious (both in terms of number of covariates282

and their relation to the rate of occurrence parameter) than the one based on AIC.283

Villarini et al. (2010) showed how the use of different penalty criteria results in dif-284

ferent “best” models for the frequency of North Atlantic and US landfalling tropical285

storms. Consult the appendix for a discussion about the impact of the correlation286

among predictors on the selected models.287
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We evaluate the model performance by analyzing the model residuals, which288

should be an independent and identically distributed, following a Gaussian distribu-289

tion (e.g., Rigby and Stasinopoulos 2005). We examine the (normalized randomized290

quantile) residuals (Dunn and Smyth 1996) by computing the first four moments of291

their distribution (mean, variance, coefficients of skewness and kurtosis), their Fil-292

liben correlation coefficient (Filliben 1975). We also examine quantile-quantile (qq)293

and worm plots (van Buuren and Fredriks 2001).294

All the calculations are performed in R (R Development Core Team, 2008) using295

the freely available gamlss package (Stasinopoulos et al., 2007).296

3.2 Zero-Inflated Beta Regression297

Modeling of the fraction of North Atlantic hurricanes that made lanfall in the US is298

performed by means of beta regression, which is used to describe rates and proportions299

(Ferrari and Cribari-Neto 2004). In a beta regression model, the predictand can300

assume values between 0 and 1 (extremes excluded). The beta distribution does not301

belong to the exponential family, like the Poisson distribution, and therefore it is302

outside of the distributions that can be fitted with a GAM or a GLM. Instead, we use303

the Generalized Linear Model in Location, Scale and Shape (GAMLSS; Rigby and304

Stasinopoulos 2005; Stasinopoulos and Rigby 2007), which provides a higher degree305

of flexibility in the selection of the distribution, compared to the classical Generalized306

Additive Models, Generalized Linear Models, Generalized Linear Mixed Models, or307

17



Generalized Additive Mixed Models. The probability density function (pdf) of the308

beta distribution can be written as:309

p(yi|α, β) =
1

B(α, β)
yα−1(1 − y)β−1 (3)

where y ∈ (0, 1), α>0 and β>0. We use the GAMLSS reparameterization (Ferrari and310

Cribari-Neto 2004; Stasinopoulos et al. 2009), in which µ=( α
α+β

) and σ=( 1
α+β+1

) when311

µ ∈ (0, 1) and σ ∈ (0, 1). The first and second moments of y are µ and σ2µ(1 − µ),312

respectively.313

The classic two-parameter beta distribution does not include 0 and 1 in the sup-314

port of the predictand. Our time series, however, has zero values (Figure 2). This315

shortcoming could be addressed by using the three-parameter zero-inflated beta dis-316

tribution (Ospina and Ferrari 2010), in which the additional parameter allows y to317

be equal to zero (it models the probability at zero). The pdf of the zero-inflated beta318

distribution can be written as:319

p(yi) = ν (4)

p(yi|µ, σ) = (1 − ν)
Γ(σ)

Γ(µσ)Γ[σ(1 − µ)]
yµσ(1 − y)−1+(1−µ)σ (5)

where equation 4 is valid for y=0 and equation 5 if y∈(0,1). The parameters µ ∈(0,1),320

σ is strictly positive, and ν ∈(0,1). The expected value of y is equal to (1 − ν)µ and321
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the variance is equal to (1− ν)(µ(1−µ)
σ+1

) + ν(1− ν)µ2. We use a logit link function for322

µ and ν, and a logarithmic link function for σ. An even more general version of the323

beta distribution is the one in which the predictand can assume all the values between324

0 and 1, extremes included. We focus on the zero-inflated beta distribution because325

there are no years in which all of the hurricanes made landfall, and the additional326

parameter (modeling the probability at y=1) would be equal to zero. The zero-327

inflated beta distribution is very flexible. It can be symmetric or highly asymmetric328

depending on the values of the parameters, with a mass of probability at zero (Figure329

3; see also Ospina and Ferrari (2010)).330

We consider the same five predictors as for the Poisson regression model (SSTAtl,331

SSTTrop, SOI, NAOMJ , NAOAO). To the best of our knowledge, studies about the332

statistical modeling of the fraction of North Atlantic hurricanes making landfall in the333

US in terms of climate indices are still lacking. Therefore, it is hard to predict what334

to expect a priori from model selection. Model selection is performed with respect335

to both AIC and SBC. Diagnostic tools to assess the quality of the fit of the beta336

inflated distributions are currently object of research (Dr. Ospina, personal commu-337

nication, 2010). The randomized quantile residuals used for the Poisson regression338

model do not appear to be applicable because the zero-inflated beta regression model339

has probability mass at zero, modifying the continuous structure of the residuals. The340

assessment of the most suitable residual is currently under study, as documented by341

the three working papers by Dr. Ospina and Dr. Ferrari (Ospina, R., and S.L.P. Fer-342
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rari, Inflated beta regression models (Working paper), 2010; Ospina, R., and S.L.P.343

Ferrari, Some Diagnostic tools for inflated beta regression models (Working paper),344

2010; Ospina, R., and S.L.P. Ferrari, A note on bias correction in inflated beta re-345

gression models (Working paper), 2010). For these reasons, assessment of the quality346

of the fit is based on visual comparison between data and the fitted zero inflated beta347

distribution. More detailed assessment of the quality of the fit should be object of fu-348

ture studies once there is a better understanding on what the most suitable residuals349

are.350

All the calculations are performed in R (R Development Core Team, 2008) using351

the freely available gamlss package (Stasinopoulos et al., 2007).352

4 Results353

4.1 Poisson Regression Model354

We start by focusing on the statistical modeling of the number of North Atlantic and355

US landfalling hurricanes using a Poisson regression model in which the logarithm of356

the rate of occurrence is a function of SSTAtl, SSTtrop, NAO, and SOI. We consider357

both linear and smooth (by means of a cubic spline) dependence of the Poisson358

parameter on these covariates, and include two-way interaction terms. Model selection359

is performed using a stepwise approach, using both AIC ans SBC as penalty criteria.360

20



We start with the results obtained using AIC as penalty criterion (Figure 4), for361

the US landfalling hurricanes (top panels), and the uncorrected (middle panels) and362

corrected (bottom panels) North Atlantic hurricane counts. The results for both363

of the SST datasets are shown (HadISSTv1: left panels; ERSSTv3b: right panels).364

We summarize the parameter estimates and the model fit performance in Figure 5365

and Table 1. In modeling the landfalling hurricanes (Figure 4, top panel), different366

covariates and functional relations between predictors and the rate of occurrence367

parameter are identified depending on the SST input data. When using the HadISST368

data, NAOMJ , SSTAtl, and SSTtrop are significant predictors. There is a linear relation369

between NAOMJ and the logarithm of the rate of occurrence parameter, while the370

relation between SSTAtl and SSTtrop and ln(Λ) is by means of a cubic spline. When371

using ERSST data, SOI is added as a significant predictor. In this case, there is372

a linear relation between SSTtrop and SOI and ln(Λ). The number of degrees of373

freedom for the fit is larger when using HadISST (10) than ERSST (8) due to the374

use of cubic splines for tropical Atlantic and tropical mean SSTs. Similar to what375

found for US landfalling tropical storms (Villarini et al. 2010), tropical Atlantic and376

tropical mean SSTs are always important predictors. Moreover, the coefficient of377

SSTAtl and SSTtrop have opposite signs, pointing to relative SST as an important378

factor in describing US landfalling hurricane frequency. Despite the complex patterns379

exhibited by the hurricane record, these models are able to describe its behavior.380

Assessment of the quality of the fit (Figure 5 and Table 1) does not highlight any381
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significant problem with these models.382

The time series of hurricane counts for the entire North Atlantic basin exhibit more383

marked multidecadal variations than observed in the US landfalling hurricane count384

time series (Figure 4, middle and bottom panels). When modeling the uncorrected385

data and using the HadISST data, SOI, tropical Atlantic and tropical mean SSTs386

are retained as important predictors. The relation between SOI and the rate of387

occurrence parameter is linear, while Λ is related to SSTAtl and SSTtrop by means388

of a cubic spline (via a logarithmic link function). The results obtained using the389

ERSST input data are slightly different. Even in this case, both tropical Atlantic390

and tropical mean SSTs are retained as important predictors and, once again, they391

have opposite sign. However, their relation to the logarithm of the Poisson parameter392

is now linear. While SOI is included in the final model, NAOAO is also included.393

Because the relation between tropical Atlantic and mean tropical SSTs and ln(Λ) is394

linear when using ERSST, the number of degrees of freedom used for the fit is smaller395

(5 against 10). These models are able to well reproduce the behavior exhibited by396

the data, with decades of increased hurricane activity alternating to decades of lower397

activity. The fit diagnostics do not indicate any large problem with these models398

(Figure 5 and Table 1).399

Similar to what was found for the uncorrected dataset, the models for the corrected400

time series always include tropical Atlantic and mean tropical SSTs as important401

predictors. In agreement with the idea that tropical Atlantic SST relative to the402
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tropical mean SST is more important than tropical Atlantic SST alone, the coefficients403

of SSTAtl and SSTtrop have opposite signs (positive for the former and negative for the404

latter). These statements are valid independently of the SST data used. When using405

HadISST data, NAO is retained as an important predictor. The relation between406

ln(Λ) and NAO is linear, while is by means of a cubic spline for tropical Atlantic407

and tropical mean SSTs. If we use ERSST data, the results (in terms of covariates408

and their relation to Λ) are similar to what found for the uncorrected dataset. The409

logarithm of the rate of occurrence is linearly related to SOI, NAOAO, SSTAtl and410

SSTtrop (the number of degrees of freedom used for the fit are less than what found411

using the HadISST data due to the linear dependence). These models are able to412

well reproduce the behavior exhibited by the data, with the alternation of periods413

of increased and decreased frequencies. The diagnostic measures used to assess the414

quality of the fit tend to support the modeling results.415

So far we have been performing model selection using AIC as penalty criterion.416

Similar to Villarini et al. (2010), we also use SBC as penalty criterion, expecting that417

these models would be more parsimonious in terms of both number of covariates and418

their relation to the rate of occurrence parameter (i.e., a smaller number of degrees of419

freedom used for the fit). We summarize the model results in Figures 6 and 7 and Ta-420

ble 2. When modeling the US landfalling hurricane counts and using HadISST data,421

we find that the same covariates we found for AIC are retained as important (NAO,422

SSTAtl and SSTtrop). However, where the models based on AIC and SBC differ is in423
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their relation to the rate of occurrence parameter. In this case, these three covariates424

are linearly related to ln(Λ), and four degrees of freedom are used for the fit. The425

results obtained using ERSSST suggest that SOI and tropical Atlantic and tropical426

mean SSTs are important predictors to describe the frequency of US landfalling hurri-427

canes. Once again, this is more parsimonious than the corresponding model based on428

AIC (four versus eight degrees of freedom used for the fit). These models are able to429

reproduce the behaviors exhibited by the data, and the fit diagnostics do not suggest430

any significant problem with these fits (Figure 7 and Table 2). Based on all these431

models, tropical Atlantic and mean tropical SSTs are always important predictors432

and their coefficients have opposite sign. These statements are valid independently433

of the input SST data and penalty criterion. The same is not true for NAO and SOI,434

because their inclusion in the final model depends on the selected penalty criterion435

and/or SST input data. These findings add supporting evidence to the key role of436

relative SST (tropical Atlantic minus tropical mean SSTs) in the frequency of US437

landfalling hurricanes and tropical storms (see also Villarini et al. (2010)).438

The model for the uncorrected time series using SBC as penalty criterion includes439

different covariates with respect to what we found when using AIC. The only two440

covariates retained as important in the final model are SOI and tropical Atlantic441

SST, independently of the SST dataset. Both of them are linearly related to the442

rate of occurrence parameter via a logarithmic link function, resulting in only three443

degrees of freedom used for the fit. This is different from what we found using AIC444
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as penalty criterion, since tropical mean SST was always retained as an important445

predictor. The model based on ERSST has a smaller AIC and SBC value than the446

one based on HadISST (Table 2), suggesting that using ERSST results in a better447

agreement to the data than using HadISST. These models are able to capture the448

variability exhibited by the data, and the fit diagnostics do not indicate any problem449

with these models (Figure 7 and Table 2).450

When modeling the corrected time series, we find that, independently on the SST451

input data, the only two predictors retained as important are tropical Atlantic and452

mean tropical SSTs. These covariates are linearly related to the logarithm of the rate453

of occurrence parameter. Despite being parsimonious (only three degrees of freedom454

are used for the fit), these models are able to well reproduce the variability exhibited455

by the data. Assessment of the model fit (Figure 7 and Table 2) does not indicate any456

significant problem with these models. The coefficients of these two covariates have457

opposite sign, with the absolute value of the coefficient of SSTtrop being slightly larger458

than the one for SSTAtl. The values of these coefficients are in agreement with what459

found by Vecchi et al. (2011) (1.707 for the intercept, +1.388 for tropical Atlantic460

SST, and -1.521 for tropical mean SST), who built a Poisson regression model from461

212 years of model runs from the HiRAM-C180 model (Zhao et al. 2009, 2010). These462

results indicate that both tropical Atlantic and mean tropical SSTs are necessary to463

describe the temporal evolution of the North Atlantic hurricane counts. Moreover, a464

uniform increase in SST would result in a slight decrease in North Atlantic hurricane465
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counts because the coefficient for SSTtrop is slightly larger in absolute value than the466

one for SSTAtl. These results are in agreement with findings for the North Atlantic467

tropical storm frequencies (Villarini et al. 2010, 2011b).468

All of these modeling results provide information about the sensitivity of the model469

selection to the selected penalty criterion and SST input data. Villarini et al. (2010)470

came to the similar conclusions when modeling the US landfalling and North Atlantic471

tropical storm count time series. Among the different models, they also suggested472

using a parsimonious model in which the logarithm of the rate of occurrence depends473

linearly on tropical Atlantic and tropical mean SSTs. This simple model was then474

used by Villarini et al. (2011b) to examine possible changes in US landfalling and475

North Atlantic tropical storm frequency under different climate change scenarios and476

using 24 climate models. In this study, this parsimonious model was selected as the477

final model for the corrected hurricane count time series when penalizing with respect478

to SBC. For sake of completeness, we include the results obtained by modeling the US479

landfalling (Figure 8) and uncorrected (Figure 9) hurricane count time series with a480

Poisson regression model in which the logarithm of the rate of occurrence parameter481

is a linear function of both tropical Atlantic and mean tropical SSTs. The models482

for the US landfalling hurricanes is able to reproduce the variability exhibited by the483

data, with no significant issues highlighted by the fit diagnostics. The values of the484

AIC are larger than what we found for the previous models, while the SBC values485

are close to those obtained by penalizing with respect to SBC and smaller than those486
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obtained by penalizing with respect to AIC. When dealing with the uncorrected data,487

a model based on only tropical Atlantic and tropical mean SSTs is able to describe the488

variability exhibited by the data reasonably well (Figure 9). The results concerning489

the quality of the fit do not point to any significant problem with these models. The490

values of AIC and SBC for these models are consistently larger than those obtained491

by the stepwise approach.492

Similar to what found in Villarini et al. (2010), there is not a unique “best” model,493

but different final models are obtained depending on the penalty criterion and the494

SST input data. In general, we would suggest describing as linear the relation between495

covariates and the logarithm of the rate of occurrence parameter in agreement with the496

parsimony principle and because at this point there are no clear physical or statistical497

reasons indicating that this functional dependence should be of a more complicated498

form. When modeling the US landfalling hurricane counts, the only covariates that499

are always included as important for any model configuration are tropical Atlantic and500

tropical mean SSTs. We, therefore, suggest using this parsimonious model. However,501

NAOMJ is often included in the final models and it would be reasonable to include it502

as well in a slightly less parsimonious model.503

It is harder to come up with recommendations for the “best” model for the uncor-504

rected dataset. In this case, only SOI and tropical Atlantic SST are always included505

in the final models, while tropical SST is an important predictor only when perform-506

ing model selection using AIC as penalty criterion. We would have expected SSTtrop507
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to be included as well, based on other studies on the sensitivity of tropical storms508

and hurricanes in dynamical models (e.g., Knutson et al. 2008; Zhao et al. 2009,509

2010; Villarini et al. 2010; Vecchi et al. 2011; Villarini et al. 2011b). Rather than a510

real “climate” feature, these results are likely due to the large impact of hurricane511

undercounts. For this reason, we recommend not using the original (uncorrected)512

HURDAT data without accounting for the undercount correction.513

The results from the modeling of the corrected dataset are more consistent with514

our current understanding of the physical processes at play in the genesis and de-515

velopment of North Atlantic hurricanes. Tropical Atlantic and tropical mean SSTs516

are always retained as important predictors, independently of the penalty criterion517

and SST input dataset. When penalizing with respect to AIC, NAO is also included.518

However, when using SBC as penalty criterion, only the two SST predictors are re-519

tained (when using both HadISST and ERSST data). To describe the frequency of520

North Atlantic hurricanes, we therefore recommend a parsimonious model in which521

the logarithm of the rate of occurrence parameter is a linear function of both SSTAtl522

and SSTtrop.523

4.2 Zero-Inflated Beta Regression Model524

We model the fraction of hurricanes making landfall in the US using a zero-inflated525

beta regression model. We consider both uncorrected and corrected time series, five526

covariates, two SST datasets, and two penalty criteria. In Figure 10 we show the527
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results obtained when using AIC as penalty criterion for model selection. We sum-528

marize the values of the parameters of these models in Table 3. When we consider the529

fractions based on the uncorrected dataset, we observe a consistent picture in terms530

of covariates, independently of the SST input data. The parameter µ is a linear531

function of NAOMJ and tropical mean SST via a logit link function. The parameter532

σ is a linear function of NAOAO by means of a logarithmic link function. Finally,533

the parameter ν depends linearly on SOI using a logit link function. These models534

are able to describe the complex behavior exhibited by the data. In particular, up535

to the 1940s there is a tendency towards higher ratios compared to the more recent536

period. This behavior could be explained by considering the likely undercount of537

hurricanes in the pre-satellite era. Based on the covariates retained as important538

predictors during the model selection, we observe both local (NAO) and remote (SOI539

and tropical mean SST) effects are important in describing these fractions. Both of540

these influences control the average ratio for a given year, because the expected value541

of the zero-inflated beta distribution depends on both µ and ν. We would have ex-542

pected NAO to be a significant covariate because of its possible link to storm steering543

(e.g., Elsner et al. 2000b, 2001). We have that the sign of the coefficients for NAO544

is always negative, indicating that a small value of this index would correspond to a545

more negative NAO phase, with the Bermuda High moving more towards the eastern546

Atlantic, and an increased mean value (keeping everything else constant). The fact547

that SOI is an important predictor in describing the probability of US landfalling548
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hurricanes was also discussed in Bove et al. (1998).549

When we consider the fractions based on the corrected dataset, we see some550

similarities but also some differences with the results obtained using the uncorrected551

dataset. The parameter µ is a linear function of both NAO covariates (averaged552

over both May-June and August-October) and tropical mean SST (by means of a553

logit function). SOI is the only predictor retained as important for ν. These results554

are common to both SST input datasets. The only difference in terms of covariates555

between the model in which we use HadISST or ERSST data is for σ: when we use556

HadISST data, this parameter is a function of only NAOMJ , while if we use ERSST557

data, it is a function of both NAOAO and tropical Atlantic SST. Using the corrected558

record, we no longer have a more marked increased in the fraction of landfalling559

hurricanes in the earlier part of the record because of the undercount correction.560

Both of the NAO covariates (averaged over both May-June and August-October) are561

included. SOI is the covariate that controls the probability mass at zero. Depending562

on whether we use HadISST or ERSST data, tropical Atlantic SST is included as a563

significant covariate for the parameter σ. There is still year-to-year variability, but564

the multidecadal variability exhibited by the hurricane frequency (Figure 1) is no565

longer clearly visible (see also Coughlin et al. (2009)).566

We have performed model selection using SBC as penalty criterion as well. For567

both of the hurricane and SST datasets, the final models are the ones with constant568

parameters. It is worth recalling that assessment of the quality of the fit is based569
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on visual comparison between model results and observations. We did not perform570

a more quantitative and thorough analysis of the residuals, since the selection of the571

most suitable residuals for the zero-inflated beta distribution is currently object of572

separate studies in the statistical literature.573

5 Conclusions574

We have performed statistical modeling of the North Atlantic and US landfalling575

hurricane counts and the fraction of hurricanes making landfall into the US over the576

period 1878-2008. The main findings of our study can be summarized as follows:577

1. We considered two different hurricane datasets (original HURDAT and account-578

ing for likely undercount with the correction described in Vecchi and Knutson579

(2011)), five different covariates (NAO averaged over the period May-June and580

August-October, SOI, tropical Atlantic SST and tropical mean SST), and two581

different SST datasets (HadISSTv1 and ERSSTv3b). Selection of important582

covariates was performed by following a stepwise approach and using AIC and583

SBC as penalty criteria. Modeling of the count data is performed by means584

of a Poisson regression model, while modeling of the fraction of storms making585

landfall in the US by means of the zero-inflated beta regression model.586

2. Depending on the penalty criterion and SST input data, we obtained different587

final models. These results indicate that there is not a unique “best” model from588
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a statistical standpoint. The results of the statistical modeling effort should help589

in assessing what the important predictors are. However, the statistical analyses590

should be complemented by physical reasonings.591

3. When modeling US landfalling and North Atlantic hurricane counts with the592

undercount correction by Vecchi and Knutson (2011), tropical Atlantic and593

tropical mean SSTs are always retained as important predictors in the final594

models, independently of the penalty criterion and SST data. The coefficients595

of these two predictors tend to have similar magnitude but opposite sign. Their596

values are very similar to those in Vecchi et al. (2011), who estimated them597

not from the observations but from 212 years of model runs from the HiRAM-598

C180 model across a broad range of climates. These results provide supporting599

evidence to the importance of relative rather than absolute Atlantic SST in600

describing the frequency of US landfalling and North Atlantic tropical storms601

and hurricanes.602

4. We used a zero-inflated beta regression model to describe the fraction of North603

Atlantic tropical storms making landfall in the US in terms of climate indices.604

We found that the observations are influenced by both local and remote effects.605

In particular, the local effects are mostly related to the NAO, which is always606

selected as an important covariate to describe the magnitude and variability of607

these fractions. On the other hand, remote effects are associated with tropical608

mean SST and SOI, with the former selected as an important predictor for the609
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parameter µ, and the latter as the only covariate that appears to be useful in610

describing the probability of having no tropical storms making landfall.611

Despite the promising results, the zero-inflated beta regression model has been612

the object of studies in the statistical literature only recently (Ospina and Ferrari613

2010). Assessment of the quality of the fit was performed only at the qualitative614

level, by comparing the observed fractions to the modeled results. Studies ex-615

amining the most suitable residuals as diagnostic tools are currently under way616

(Dr. Ospina, personal communication, 2010). Moreover, model selection using617

SBC as penalty criterion does not identity any of the climate indices as signifi-618

cant predictors. It is possible that covariates different from those employed in619

this work could provide more stable results.620

5. Different studies investigated landfalling hurricanes by dividing the US into sub-621

regions (e.g., Gulf of Mexico, East Coast, Florida Panhandle; e.g., Dailey et al.622

2009; Brettschneider 2008; Smith et al. 2007; Nakamura et al. 2009; Kossin et al.623

2010). Future studies examining the fractions of hurricanes making landfall in624

specific US sub-areas could help highlighting clearer features that may have been625

disguised when focusing on the entire North Atlantic basin and US coastline.626
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7 Appendix: Impact of Collinearity635

To describe the relation between North Atlantic and US landfalling hurricane frequen-636

cies and climate indices we have used NAO, SOI, SSTAtl, and SSTtrop as predictors.637

Model selection was performed by means of a stepwise approach using AIC and SBC638

as penalty criteria. We have found that both tropical Atlantic and tropical mean639

SSTs are always retained as important predictors for US landfalling and corrected640

data (for the uncorrected dataset, tropical mean SST is not included when penalizing641

with respect to SBC). This statement is valid independently of the selected penalty642

criterion and SST input data. One element that requires further discussion is the fact643

that tropical Atlantic and tropical mean SSTs are positively correlated (the value of644

the correlation coefficient between these two covariates is equal to 0.73 for HadIS-645

STv1 and 0.78 for ERSSTv3b data), possibly affecting the outcome of our modeling646

efforts. Even though these values of correlation may seem large, they are smaller than647

what found in other studies in which model selection was performed with respect to648

these penalty criteria (e.g., Burnham and Anderson 2004; Stasinopoulos and Rigby649

2007). On this matter, Burnham and Anderson (2002) suggest not to drop a pre-650

dictor unless the correlation coefficient is extremely high (near collinearity problem).651

They indicate |0.95| as a cutoff value for dropping a covariate. Nonetheless, to show652

that relative SST (tropical Atlantic SST minus tropical mean SST; SSTrel) is a key653

factor in explaining the frequency of North Atlantic and US landfalling hurricanes,654

we use the variance inflation factor (VIF), a diagnostic tool routinely used to assess655
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the impact of collinearity.656

The VIF allows quantifying the “inflation” of the sampling variance of an estimate657

coefficient due to collinearity. We compute the VIF using the vif function in the658

Design package (Harrell Jr 2009) in R (R Development Core Team 2008), in which the659

methodology presented in Davis et al. (1986) is implemented (consult Wax (1992)).660

A VIF value of 1 indicates that the predictors are uncorrelated, while larger values661

reflect increasing degrees of correlation among covariates.662

In order to evaluate whether collinearity could have an unacceptably high impact663

on the modeling results, different rules of thumb has been proposed, and a VIF cut-off664

value of 10 is generally adopted (e.g., O’Brien 2007). Davis et al. (1986) refer to a665

VIF value larger than 10 as “indicating a modest amount of dependency among the666

variables.” In this study, we set a VIF value of 10 to decide whether collinearity667

represents a substantial problem.668

Let us start with US landfalling hurricanes. If we use all the five predictors and669

the HadISST data, the largest value of VIF we obtain is 2.81. This value slightly670

increases when we use the ERSST data (VIF equal to 2.87), reflecting the larger671

correlation between tropical Atlantic and tropical mean SSTs for this dataset. For672

the final models obtained using AIC and SBC as penalty criteria and both of the673

SST data, the results are similar, with the largest value of VIF equal to 2.87. When674

dealing with the uncorrected and corrected records, we come to the same conclusion,675

independently of the model configuration and SST input data. The largest VIF676
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value for the uncorrected data is 2.95, while it is equal to 2.87 for the corrected677

record. Based on these results (VIF much smaller than 10), we can conclude that678

the dependence among predictors does not have a significant effect on the outcome679

of this study (see also discussion in Villarini et al. (2011a)).680
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Figure 1: Time series of the count of US landfalling hurricane (top panel) and of the
North Atlantic hurricanes using the original HURDAT dataset (middle panel) and
after applying the correction in Vecchi and Knutson (2011) (bottom panel).
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Figure 2: Time series of the fraction of the North Atlantic hurricanes that made
landfall in the US, using the original HURDAT database (top panel), and after cor-
recting it as in Vecchi and Knutson (2011) (bottom panel).
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Figure 3: Probability density function for the zero-inflated beta distribution for
different combinations of the µ and σ parameters. The parameter ν is set equal to
0.25.
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Figure 4: Modeling the count data for (top) landfalling hurricanes, (middle) “uncor-
rected” HURDAT dataset, and (bottom) the HURDAT dataset with the Vecchi and
Knutson (2011) correction using the climate indices as predictors. Model selection is
performed with respect to AIC. The results in the left panels are obtained by using
the HadISSTv1 SST data, while those in the right panels on the ERSSTv3b SST
data. The white line represents the median (50th percentile), the dark gray region the
area between the 25th and 75th percentiles, and the light gray region the area between
the 5th and 95th percentiles.
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Figure 5: Worm plots of the six models in Figure 4.
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Figure 6: Same as Figure 4, but using SBC as penalty criterion.
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Figure 7: Worm plots of the six models in Figure 6.
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Figure 8: Modeling the US landfalling hurricane count time series using tropical
Atlantic and mean tropical SSTs as predictors (top panels). The white line represents
the median (50th percentile), the dark gray region the area between the 25th and 75th

percentiles, and the light gray region the area between the 5th and 95th percentiles. In
the bottom panels, worm plots and summary statistics for these models are presented.
The results in the left panels are obtained by using the HadISSTv1 SST data, while
those in the right panels on the ERSSTv3b SST data.
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Figure 9: Same as Figure 8, but for the “uncorrected” HURDAT dataset.
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Figure 10: Modeling the fraction of North Atlantic hurricanes making landfall in the
US based on the “uncorrected” HURDAT dataset (top panels), and the HURDAT
dataset with the Landsea et al. (2010) correction (bottom panels) using the climate
indices as predictors. Model selection is performed with respect to AIC. The results
in the left panels are obtained using the HadISSTv1 SST data, while those in the
right panels the ERSSTv3b SST data. The white line represents the median (50th

percentile), the dark gray region the area between the 25th and 75th percentiles, and
the light gray region the area between the 5th and 95th percentiles.
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Table 1: Summary statistics for the Poisson modeling of hurricane counts using
climate indices as covariate. Model selection is performed with respect to AIC. The
first value is the point estimate, while the one in bracket is the standard error; “D. of
F. for the fit” indicates the degrees of freedom used for the fit. In each cell, the values
in the first (second) row refer to the model using the HadISSTv1 (ERSSTv3b). When
“cs” is present, it means that the dependence of Λi on that covariate is by means of
a cubic spline (otherwise, linear dependence is implied).

Landfall Uncorrected Corrected
Intercept 0.50 (0.07) 1.67 (0.04) 1.84 (0.04)

0.52 (0.07) 1.68 (0.04) 1.86 (0.04)
NAOMJ -0.18 (0.07) - -0.06 (0.03)

-0.14 (0.07) - -
NAOAO - - -

- 0.07 (0.04) 0.07 (0.04)
SOI - 0.05 (0.03) -

0.09 (0.04) 0.09 (0.03) 0.05 (0.02)
SSTAtl 1.21 (0.34; cs) 1.15 (0.20; cs) 1.12 (0.18; cs)

0.94 (0.31; cs) 1.03 (0.18) 1.01 (0.17)
SSTTrop -1.93 (0.49; cs) -0.75 (0.30; cs) -1.37 (0.25; cs)

-1.32 (0.44; cs) -0.51 (0.25) -0.97 (0.23)
D. of. F. for the fit 10 10 10

8 5 5
Mean (residuals) 0.04 -0.00 0.01

0.03 0.02 0.04
Variance (residuals) 0.78 0.67 0.55

0.76 0.70 0.62
Skewness (residuals) 0.18 -0.36 -0.25

0.13 -0.06 -0.05
Kurtosis (residuals) 2.99 2.92 2.72

2.77 3.00 2.92
Filliben (residuals) 0.997 0.994 0.996

0.993 0.997 0.997
AIC 423.6 559.9 571.8

425.9 560.4 573.2
SBC 452.3 588.6 600.5

448.9 574.8 587.6
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Table 2: Same as Table 1, but using SBC as penalty criterion.

Landfall Uncorrected Corrected
Intercept 0.49 (0.08) 1.68 (0.04) 1.86 (0.03)

0.57 (0.07) 1.68 (0.04) 1.85 (0.04)
NAOMJ -0.18 (0.07) - -

- - -
NAOAO - - -

- - -
SOI - 0.10 (0.02) -

0.11 (0.04) 0.11 (0.02) -
SSTAtl 1.18 (0.34) 0.73 (0.13) 1.11 (0.17)

1.07 (0.30) 0.68 (0.11) 1.05 (0.16)
SSTTrop -1.95 (0.49) - -1.33 (0.25)

-1.41 (0.44) - -1.17 (0.22)
D. of. F. for the fit 4 3 3

4 3 3
Mean (residuals) -0.05 0.00 0.03

-0.00 0.02 0.01
Variance (residuals) 0.99 0.82 0.68

0.94 0.79 0.71
Skewness (residuals) -0.01 -0.10 0.04

-0.17 -0.17 0.10
Kurtosis (residuals) 3.11 2.84 2.79

3.42 2.93 2.94
Filliben (residuals) 0.993 0.995 0.997

0.994 0.997 0.998
AIC 429.5 568.7 578.6

429.7 563.6 577.1
SBC 441.0 577.3 587.3

441.2 572.2 585.7
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Table 3: Summary statistics for the zero-inflated beta regression modeling of the
fraction of hurricanes making landfall using climate indices as covariate. Model se-
lection is performed with respect to AIC. The first value is the point estimate, while
the one in bracket is the standard error. In each cell, the values in the first (second)
row refer to the model using the HadISSTv1 (ERSSTv3b). The dependence between
predictors and parameters is linear (via an appropriate link function).

Uncorrected µ σ ν

Intercept -0.45 (0.07) 2.11 (0.13) -1.65 (0.25)
-0.46 (0.07) 2.14 (0.13) -1.65 (0.25)

NAOMJ -0.14 (0.06) - -
-0.13 (0.06) - -

NAOAO - -0.23 (0.15) -
- -0.26 (0.15) -

SOI - - -0.26 (0.16)
- - -0.26 (0.16)

SSTAtl - - -
- - -

SSTTrop -1.25 (0.32) - -
-1.13 (0.26) - -

Corrected µ σ ν

Intercept -0.82 (0.06) 2.59 (0.14) -1.65 (0.25)
-0.80 (0.06) 2.50 (0.13) -1.65 (0.25)

NAOMJ -0.18 (0.06) 0.23 (0.14) -
-0.14 (0.05) - -

NAOAO -0.12 (0.07) - -
-0.09 (0.07) -0.24 (0.16) -

SOI - - -0.26 (0.16)
- - -0.26 (0.16)

SSTAtl - - -
- -0.62 (0.36) -

SSTTrop -0.59 (0.31) - -
-0.65 (0.24) - -
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